145. Synthèse facile de dérivés du diphényl-2,4-aza-3-bicyclo[3.3.1]nonane et du diphényl-7,9-aza-8-bicyclo[4.3.1]décane¹)

par Carmen del Campo, Ernesto Martínez²)* et Gregorio G. Trigo

Département de Chimie Organique et Pharmaceutique, Faculté de Pharmacie, Université Complutense de Madrid, Madrid (Espagne)

(18.IV.84)

Facile synthesis of derivatives of 2,4-diphenyl-3-azabicyclo[3.3.1]nonane and 7,9-diphenyl-8-azabicyclo[4.3.1]decane

Summary

The facile synthesis of hydantoins, cyanhydrins and aminonitriles derived from 2, 4diphenyl-3-azabicyclo[3.3.1]nonanone and 7, 9-diphenyl-8-azabicyclo[4.3.1]decanone is described. Configurations at C(9) or C(10) of the new compounds with pharmaceutical and synthetical utility is deduced from their spectral properties.

Les dérivés du diphényl-2, 4-aza-3-bicyclo[3.3.1]nonane et du diphényl-7, 9-aza-8-bicyclo[4.3.1]décane ont un intérêt pharmacologique certain par leur activité sur le système nerveux central. Bien que l'information sur des dérivés de l'aza-3-bicyclononane est abondante, elle est limitée pour les composés diarylazabicycliques substitués en C(9) ou C(10), dont le nombre de composés décrits est assez restraint [2]. Ce travail montre la synthèse facile d'intermédiaires de ce type, possédant de nombreuses applications synthétiques, à partir des cétones correspondantes de faible réactivité.

Les cétones 1, 4 et 7 traitées, dans un flacon fermé, par du cyanure de potassium et du carbonate d'ammonium [3], dans la N, N-diméthylformamide à 60°, fournissent les mélanges d'hydantoïnes isomères α et β^3) 2 + 3, 5 + 6 et 8 + 9 (*Schéma 1*). La détermination du rapport molaire (*Tableau 1*) des isomères qui n'ont pas pu être séparés, a été faite par RMN. L'assignation de configuration a été faite également par RMN [1], grâce au déblindage anisotropique que le groupement C(4') = 0 exerce sur les atomes d'hydrogène axiaux en C(2) et C(4), tenant compte la conformation rigide chaise/chaise de ces bicycles [4]. Un traitement similaire des cétones 10, 12 et 14 conduit stéréosélectivement à l'hydantoïne α -11 et β -13 et -15 (*Schéma 1*), en accord avec une attaque du groupe carbonyle de chaque cétone du côté le moins encombré [5] [6]. D'ailleurs, les valeurs δ de H-C(2) et H-C(4) pour 11, H-C(7) et H-C(9) pour 13 et 15 sont très

¹) Une partie de ce travail a fait l'objet d'une communication préliminaire [1].

²⁾ Adresse actuelle: Facultad de Farmacia, apartado 293. Universidad de Navarra, Pamplona (Espagne).

³) Par rapport au cycle de la pipéridine, H-N(1') est en position axiale dans l'isomère α , est en position équatoriale dans l'isomère β .

semblables aux valeurs correspondantes pour 5, 3 et 6 (Tableau 2) confirmant ainsi nos attributions antérieures.

Le traitement de 1 dans les conditions précédentes, mais à 46°, nous a permis de s'éparer le mélange des aminonitriles 16 (β) et 17 (α) en plus du mélange 2+3 (Schéma 2). Le spectre RMN de 16 + 17 montre les signaux pour H-C(2) et H-C(4) des 2 isomères clairement séparés, comme c'est habituel pour ce type de produits

Tableau 1. Données analytiques et quelques fréquences d'absorption IR des hydantoines 2 + 3, 5 + 6, 5, 8 + 9, 11, 13 et 15

Com	p. F	$\alpha:\beta$	solv.	rend.	Form.	Analyse	[%]				
						Calc. (Tr	(;		IR [cm ⁻¹]		
	[°C]	^a)	(q	[%]	(W)	С	Н	z	<i>ў</i> (N–H)	ν̃ [C(sp ³)-H]	<i>й</i> (О–Н)
7 +	180-182	3:2	A	35	$C_{22}H_{23}N_3O_2$ (361,2)	73,10	6,41	11,62	3400, 3320, 3220	2970–2860	1770, 1720
+ 4	197-195	7.3	Я	58	C.,H.,N,O, (375.2)	(55,57) 73,57	(6,19) 6.71	(11,68) 11 19	3460 3240	2980-2800	1770 1720
			1	2		(73.22)	(6.53)	(11.47)			
S	195-197	1:0	C	15	$C_{23}H_{25}N_3O_2$ (375,2)	73,57	6,71	(11, 19)	3460, 3240	2980-2800	1770, 1720
						(73,62)	(6, 83)	(11,25)			
5 + 8	270-271	1:1	D	20	$C_{24}H_{27}N_3O_4$ (421,3)	68,39	6,45	9,96	3460, 3300, 3220	2980-2830	1770, 1720
						(68, 59)	(6,58)	(9,79)			
П	286-287	1:0	ш	46	C ₂₅ H ₂₉ N ₃ O ₄ (435,3)	68,94	6,71	9,64	3460, 3210	2980-2800	1760, 1720
						(68, 99)	(6, 83)	(9,49)			
13	306-308	0:1	ш	2	$C_{23}H_{25}N_3O_2$ (375,4)	73,57	6,71	11,19	3480, 3420, 3240	2980-2860	1770, 1710
						(73, 25)	(6, 88)	(11, 27)			
15	288-290	0:1	ш	22	C ₂₄ H ₂₇ N ₃ O ₂ (389,4)	74,01	6,98	10,78	3460, 3300	2980–2800	1770, 1720
						(74, 33)	(7,02)	(10,82)			
a)	Rapport molaire										
<u></u>	Solvant de crista	Ilisation: A	V: DMF; B:	: EtOH; C:	MeOH; D: dioxanne-1,4	I; E: Me ₂ CC	Ċ				

Helvetica Chimica Acta - Vol. 67 (1984)

Protons	Compo	osé							
	2	3	5	6	8	9	11	13	15
$H-N(3')^b)$	10,75s	10,75s	10,70s	10,70s	10,70s	10,80s	10,805	10,80s	10,75s
H-N(1')	8,90 <i>s</i>	8,48 <i>s</i>	8,90s	8,45 <i>s</i>	8,85 <i>s</i>	8,40s	8,90 <i>s</i>	7,65s	7,70s
aromat.	7,70	-7,30m	7,70	-7,10m	7,50-	-7,38d°)	7,60–7,20m	7,60–7,00m	7,50-7,10m
					7,00	-6,87 <i>d</i>	7,00-6,85d ^d)		
H-C(2), H-C(4)	4,65d	5,12d	4,05d	4,60 <i>d</i>	4,56 <i>d</i>	5,10 <i>d</i>	3,90 <i>d</i>	5,05d ^e)	4,50d ^e)
	(1)	(1)	(3)	(3)	(1)	(1)	(3)	(1)	(3)
H-C(1), H-C(5)	2,	40m	2,	25m	1,	75m	1,70m	2,20m	1,90m
N-CH ₃			2,03s	2,03s			1,90s		2,10s
autres	2,20	-0,80m	1,90	-0,80m	1,70	-0,80m	1,60-0,90m	1,60-0,90m	1,60-1,00m

Tableau 2. Données de RMN^a) des hydantoïnes 2, 3, 5, 6, 8, 9, 11, 13 et 15

(*Tableau 3*). L'attribution de configuration a été faite tenant compte du blindage anisotropique que le groupement nitrile exerce sur les protons axiaux H-C(2) et H-C(4)du produit de configuration β (16): la valeur inférieure du déplacement chimique de ces protons est donc attribuée à isomère β .

Comp.	Protons					
	aromat.	H-C(2), H-C(4)	N-CH ₂	H-C(1), H-C(5)	N-CH ₃	autres
16 ^h)	7,50-7,20m	4,30 <i>d</i>				
		(1)		2,05m		1,80-1,50m
17 ^b)		4,70 <i>d</i>				
		(1)				
18 ^c)	7,80–7,22m	4,75d		2,15m		1,80–0,80m
		(1)				
19 ^c)	7,70–7,20 <i>m</i>	4,05d		2,10m	1,895	1,70–1,00 <i>m</i>
		(3)				
20 ^d)	7,60–7,30 <i>m</i>	4,01 <i>d</i>		2,10m	1,90s	1,80–1,00 <i>m</i>
	7,00–6,80d ^e)	(3)				
21	7,70–7,10 <i>m</i>	4,95d	3,20–2,80 <i>m</i>	2,05m		1,90–0,90 <i>m</i>
		(1)				
22	7,60–7,10m	4,15d	3,10-2,70m	2,05m	1,90s	1,80–0,90 <i>m</i>
		(4)				
23	7,80–7,10m	4,80 <i>d</i>	3,10–2,70 <i>m</i>	2,05m		1,90–0,80 <i>m</i>
		(1)				
24	7,50–7,10m	4,05 <i>d</i>	2,95–2,60 <i>m</i>	2,10m	1,90s	1,75–0,90m
		(3)				
25	7,70–7,20 <i>m</i>	4,85 <i>d</i>	4,05s	2,00m		1,80–1,25m
		(1)				
26	7,707,20m	4,10 <i>d</i>	4,00 <i>s</i>	2,00m	1,90 <i>s</i>	1,90–1,30 <i>m</i>
		(3)				

Tableau 3. Données de RMN^a) des aminonitriles 16, 17, 21-26 et des cyanhydrines 18-20

^a) Constantes de couplage J(2,1) (Hz) entre parenthèses; solvant: 16 + 17 et 18-20 (D₆)DMSO, 21-26 CDCl₃. ^b) NH₂, 2,20s interchangeable avec D₂O. ^c) OH, 7,10s interchangeable avec D₂O. ^d) OH, 4,30s interchangeable avec D₂O; OCH₃, 3,70s. ^e) J_{AB} 8 Hz.

		Tableau	4. Donné.	es analytiqu	es et quelques fréquences d'abso	rption IR d	es aminon	itriles 16 +	17, 21–26 et de	s cyanhydrines 1	8-20	1
Col	mp.	Ч	solv.	rend.	Form.	Analyse	[%]					
						Calc. (Tr	(;		IR (cm ⁻¹)			
		['C]	(₈	[%]	(M)	c	Н	Z	î (N-H)	<i>ў</i> (О—Н)	γ [C(sp ³)-H]	C≡N
16	+ 17 ^b)	142145	V	11	$C_{21}H_{23}N_3$ (317,3)	79,46	7,30	13,23	3390, 3320			
						(79,67)	(7,21)	(13,42)				
18		170–174	B	86	$C_{21}H_{22}N_2O \cdot H_2O$ (336,1)	74,97	7,10	8,30		3320	3000-2880	2240
						(74,94)	(7, 31)	(8,20)				
19		200-202	C	75	C ₂₂ H ₂₄ N ₂ O (332,2)	79,48	7,27	8,42		3370	2970-2800	2250
						(19,71)	(7,48)	(8,31)				
20		210-212	C	40	$C_{24}H_{28}N_2O_3$ (392,4)	73,44	7,19	7,13		3420	2960-2800	2230
						(73,53)	(7,08)	(7,25)				
21		140-142	B	30	$C_{25}H_{31}N_3$ (373,5)	80,38	8,36	11,24	3300, 3320		3000-2820	2210
						(80, 15)	(8,12)	(11,45)				
22		138–139	۲	45	$C_{26}H_{33}N_3$ (387,5)	80,57	8,58	10,84	3320		2980-2760	2210
						(80, 48)	(8, 64)	(10, 62)				
53		150-152	c	35	$C_{24}H_{29}N_3$ (359,5)	80,18	8,13	11,68	3300, 3320		3000-2820	2220
						(66,67)	(7,97)	(11,45)				
24		158-159	A	40	$C_{25}H_{31}N_3$ (373,5)	80,38	8,36	11,24	3300		2960-2760	2220
						(80, 26)	(8,42)	(11, 10)				
25		159-160	D	32	$C_{28}H_{19}N_3$ (407,5)	82,51	7,17	10,30	3360, 3300		3000-2820	2240
						(82,43)	(7,22)	(10, 18)				
26		162-163	D	35	$C_{29}H_{31}N_3$ (421,5)	82,62	7,41	9,96	3300		2980-2760	2220
ļ						(82,51)	(1,30)	(10,12)				
a)	Solvant d	e cristallisatio	on: A: Me	eOH; B: di	oxanne-1,4/éther de pétrole; C:	Et ₂ O/éther	de pétrole	e; D: dioxa	nne-1,4/MeOH			
<u>a</u>	Rapport	molaire 16/1	7 3:7.			1						

Helvetica Chimica Acta - Vol. 67 (1984)

1295

Le traitement des cétones 1, 4 et 10 avec du cyanure de potassium et du chlorure d'ammonium dans le mélange dioxanne-1, 4/eau, à température ambiante, fournit stéréosélectivement les cyanhydrines de configuration α 18, 19 et 20 (Schéma 2, Tableau 3) avec d'excellents rendements (Tableau 4). Sous les conditions thermodynamiques de cette méthode on n'obtient que l'isomère le plus stable ayant le groupement hydroxyle axial par rapport au cycle diarylpipéridinique. La plus grande stabilité des isomères α de certains alcools en C(9) derivés de l'aza-3-bicyclononane a été expliqué par l'interaction entre l'atome d'hydrogène hydroxylique et la paire d'électrons nonliantes de l'azote pipéridinique [7]. Nos résultats montrent que la présence des substituants phényles en position α par rapport à l'azote n'empêchent pas cette interaction, malgré la conformation chaise certainement rigide du cycle pipéridinique.

Le traitement des cyanhydrins 18 et 19 avec les butylamine, propylamine et benzylamine dans le dioxanne-1,4, sous conditions thermodynamiques, fournit les N-alkylaminonitriles 21, 22, 23, 24 et 25, 26 (Schéma 3). L'attribution de configuration semble incontestable d'après la similitude des valeurs δ pour H-C(2) et H-C(4) de ces produits et celles des cyanhydrins correspondants (Tableau 3). Ces résultats confirment la plus grande stabilité des isomères ayant le groupement polaire fixé en C(9) (OH, NH) orienté vers le cycle pipéridinique.

Les substances que nous avons synthétisées présentent d'autres régularités. Les déplacements chimiques de H-C(2) et H-C(4) des produits N-méthylés sont blindés d'au moins 0,50 ppm par rapport à ceux des analogues non méthylés. Cette différence doit être attribuée au plus grand effet de protection du groupement méthyle. D'autre part, ce groupement prend une position équatoriale, tandis que l'atome d'hydrogène pipéridinique s'oriente axialement. Ce fait est confirmé par deux données spectroscopiques: le couplage entre H-C(2) et H-C(1) est de 3 Hz dans la série N-méthylée (1 Hz dans la série nonméthylée) [8] (Tableaux 2 et 3) et la bande d'absorption C-H dans l'IR vers 2800 cm⁻¹ [9] (Tableaux 1 et 4).

Partie expérimentale

Méthodes générales. Les points de fusion (F) ont été mesurés sous microscope sur platine chauffante Reichert 723. Les spectres IR ont été enregistrés sur un spectrophotomètre Perkin Elmer 577. Les spectres RMN (étalon interne TMS) ont été mesurés sur un appareil Perkin Elmer R 24B. Les analyses élémentaires ont été déterminées dans un microanalyseur Carlo Erba 1104.

La diphényl-2, 4-aza-3-bicyclo[3.3.1]nonanone-9 (1) et la bis(p-méthoxyphényl)-2, 4-aza-3-bicyclo[3.3.1]nonanone-9 (7) ont été préparées selon [10] et la diphényl-7, 9-aza-8-bicyclo[4.3.1]decanone-10 (12) selon [11]. Les cétones N-méthylées 4, 10 et 14 ont été préparées par méthylation de 1, 7 et 12 avec du sulfate de diméthyle en présence de K₂CO₃ dans l'acétone anhydre. Préparation des hydantoïnes 2 + 3, 5 + 6, 5, 8 + 9, 11, 13 et 15. On chauffe, dans un flacon fermé, un mélange d'aminocétone (4 mmol), de KCN (6 mmol) et de $(NH_{4})_2CO_3$ (6 mmol) dans la DMF (30 ml) pendant 6 jours à 60°. Puis on sépare la partie insoluble et la solution est versée sur H_2O (200 ml). Le solide précipité, après filtration, est lavé à H_2O jusqu'à pH 7 et séché. Après détermination du rapport molaire des isomères pour chaque mélange (*Tableau 1*) on effectue cristallisations. Les mélanges $\alpha + \beta$ -diphényl-2,4-aza-3-bicyclo-[3.3.1]nonane-spiro-9-hydantoïne-5' (2 + 3) et $\alpha + \beta$ -bis(p-méthoxyphényl)-2,4-aza-3-bicyclo-[3.3.1]nonane-spiro-9-hydantoïne-5' (8 + 9), montrent à peu près les mêmes rapports d'isomères après plusieurs cristallisations dans la DMF, CH₃CN, i-PrOH et BuOH.

Du mélange $\alpha + \beta$ -méthyl-3-diphényl-2, 4-aza-3-bicyclo[3.3.1]nonane-spiro-9-hydantoïne-5' (**5** + **6**), on a séparé l'isomère α -5 après 3 cristallisations dans MeOH. La α -(*N*-méthyl-bis-(*p*-méthoxyphényl)-2, 4-aza-3-bicyclo[3.3.1]nonane-spiro-9-hydantoïne-5' (**11**), la β -diphényl-7, 9-aza-8-bicyclo[4.3.1]décane-spiro-10-hydantoine-5' (**13**) et la β -*N*-méthyl-diphényl-7, 9-aza-8-bicyclo[4.3.1]décane-10-spiro-hydantoïne-5' (**15**) ont été obtenues de la réaction correspondante comme un seul isomère. Les données spectroscopiques et analytiques des hydantoïnes sont rassemblées dans les *Tableaux 1* et 2.

 $\alpha + \beta$ -Amino-9-diphényl-2, 4-aza-3-bicyclo[3.3.1]nonane-carbonitrile-9 (16 + 17). On chauffe, dans un flacon fermé, un mélange de cétone 1 (5 g, 17 mmol), de KCN (1,5 g, 24 mmol) et de (NH₄)₂CO₃ (3,5 g, 35 mmol) dans la DMF (60 ml) pendant 24 h à 46°. Puis on sépare par filtration la partie insoluble et la solution est versée sur de H₂O (200 ml). Le solide précipité est séparé et lavé à H₂O jusqu'à pH 7 et séché. Le solide est repris par Et₂O (15-20 ml). La partie insoluble est un mélange de 2 + 3, et la solution après évaporation à sec fournit le mélange d'aminonitriles 16 + 17 qui est purifié par cristallisation dans MeOH (*Tableaux 1* et 3).

Préparation des cyanhydrines **18**, **19** et **20**. Un mélange d'aminocétone (14 mmol), de KCN (14 mmol) et de NH₄Cl (14 mmol) dans dioxanne-1, 4/eau (35 ml:1 ml) est agité pendant 3 jours à température ambiante pour les cétones **1** et **4**, et pendant 7 jours pour la cétone **10**. Puis le mélange est versé sur de H₂O (400 ml). Les cyanhydrines α-hydroxy-9-diphényl-2, 4-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**18**) et α-méthyl-3-hydroxy-9-diphényl-2, 4-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**18**) et α-méthyl-3-hydroxy-9-diphényl-2, 4-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**19**) précipitent et sont séparées par filtration, lavage à H₂O jusqu'à pH 7 et cristallisation. La cyanhydrine α-hydroxy-9-méthyl-3-bis(*p*-méthoxyphényl)-2, 4-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**20**) se sépare sous forme d'une huile que l'on extrait à Et₂O (3 × 50 ml). La phase organique est lavée à H₂O et séchée (Na₂SO₄). Après évaporation du solvant, le résidu est repris par MeOH (15 ml) pour fournir le produit cristallin. Les données spectroscopiques et analytiques des cyanhydrines sont rassemblées dans les *Tableaux 3* et 4.

Préparation des aminonitriles **21–26**. Un mélange de cyanhydrine **18–20** (10 mmol) et d'amine (15 mmol) dans le dioxanne-1,4 (100 ml) est agité pendant 4 jours à température ambiante. Puis la solution est versée sur H₂O (300 ml) et l'huile qui se sépare est extraite à Et₂O (3×50 ml). La phase organique est lavée à H₂O et séchée (Na₂SO₄). Après évaporation du solvant le résidu est cristallisé (*Tableau 4*). Ainsi ont été obtenus: l'α-butylamino-9-diphényl-2,4-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**21**), l'α-diphényl-2,4-propylamino-9-aza-3-bicyclo[3.3.1]nonanecarbonitrile-9 (**25**) et les analogues N-méthylés **22**, **24** et **26**.

RÉFÉRENCES

- [1] E. Martínez, C. del Campo & G.G. Trigo, Helv. Chim. Acta 66, 338 (1983).
- [2] R. Jeyaraman & S. Avila, Chem. Rev. 81, 149 (1981).
- [3] H.T. Bucherer & V.A. Lieb, J. Prakt. Chem. 141, 5 (1943).
- [4] R. Jeyaraman, C. B. Jawaharing, S. Avila, K. Ganapathy, E. L. Elliel, M. Manoharam & S. Morris-Natschke, J. Heterocycl. Chem. 19, 449 (1982).
- [5] G.G. Trigo, E. Gálvez, M. Espada & C. Bernal, J. Heterocycl. Chem. 16, 977 (1979).
- [6] E. LLama-Hurtado, E. Martínez & G.G. Trigo, Anales de la Real Sociedad Española de Física y Química, en presse.
- [7] H.O. House & M.W. Bryant, J. Org. Chem. 30, 3634 (1965).
- [8] E. Martinez & C. del Campo, Résultats non publiés.
- [9] F. Bolhman, Chem. Ber. 91, 2157 (1958).
- [10] V. Baliach & R. Jeyaraman, Indian J. Chem. 9, 1020 (1971).
- [11] V. Baliach, R. Jeyaraman & R. Ushna, Indian J. Chem. 15, 90 (1971).